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ABSTRACT:

Needs for fine-grained, accurate and up-to-date land cover (LC) data are important to answer both societal and scientific purposes.
Several automatic products have already been proposed, but are mostly generated out of satellite sensors like Sentinel-2 (S2) or
Landsat. Metric sensors, e.g. SPOT-6/7, have been less considered, while they enable (at least annual) acquisitions at country scale
and can now be efficiently processed thanks to deep learning (DL) approaches. This study thus aimed at assessing whether such
sensor can improve such land cover products. A custom simple yet effective U-net - Deconv-Net inspired DL architecture is de-
veloped and applied to SPOT-6/7 and S2 for different LC nomenclatures, aiming at comparing the relevance of their spatial/spectral
configurations and investigating their complementarity. The proposed DL architecture is then extended to data fusion and applied
to previous sensors. At the end, the proposed fusion framework is used to enrich an existing S2 based LC product, as it is generic
enough to cope with fusion at distinct levels.

1. INTRODUCTION

Needs for fine-grained, accurate and up-to-date land cover (LC)
data are important to answer both public policies monitoring is-
sues and scientific purposes. Indeed LC is a mandatory know-
ledge for various uses, such as monitoring urban or forest sprawl
or providing inputs to (e.g. climate) simulations. LC products
exist at various scales (ranging from global to local level). Some
of them are generated automatically (Inglada et al., 2017, Pesaresi
et al., 2016), but often out of Landsat 8 or Sentinel 2 (S2) satel-
lite data. Others are manually plotted to ensure quality and ex-
hibit a higher level of details (when created out of Very High
spatial Resolution (VHR) imagery), but generating and updat-
ing such products is tedious, long and expensive. Thus using
VHR data for LC semantic segmentation would be a way to at
least provide change detection inputs to the updating process of
a LC map (Matikainen et al., 2019) or to enrich (improve delin-
eation, add smaller objects but also better discriminate textured
classes) the content of a product existing at a lower resolution.

A strong trend in remote sensing during the last decade is the
outstanding availability of an unprecedented amount of satellite
sensors exhibiting multi-modal and complementary character-
istics. VHR sensors enable the delineation of small features
and the use of texture information, but are generally limited to
4 spectral bands (red - green - blue - near infrared) and rare
acquisitions, which reduces their ability to distinguish fine LC
types. On the other hand, sensors such as S2 have more bands
and an important revisit frequency (time series) but a less geo-
metric resolution. Due to their availability at large scale, S2 or
Landsat8 time series have often been considered for automatic
land cover classification (Inglada et al., 2017, Lefebvre et al.,
2016, Pelletier et al., 2019, Pesaresi et al., 2016).

In the mean time, the advent of deep learning (DL) for semantic
segmentation has enabled to efficiently process VHR data, ex-
ploiting texture and context information in a better way than
with classic machine learning methods as long as a sufficient
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training data sets are available. Thanks to the availability of
several benchmarks (such as ISPRS Vaihingen and Postdam
ones), many DL studies have been devoted to submetric VHR
data (Volpi, Tuia, 2017, Marmanis et al., 2016), in particular
when 3D information is also available (Paisitkriangkrai et al.,
2016, Audebert et al., 2018). However, metric VHR sensors,
e.g. SPOT-6/7, have been less considered, while they enable
(at least annual) acquisitions at country scale (Postadjian et al.,
2017, Gaetano et al., 2018).

Thus, this study is mainly dedicated to this kind of metric re-
mote sensing data available regularly at country scale, aiming at
identifying to which extent an enhanced spatial resolution can
improve LC maps. Several issues are considered. First, a DL ar-
chitecture is developed to process them, and assessed for differ-
ent LC nomenclatures on SPOT-6/7 (SPOT-6/7) data. A com-
parison between SPOT-6/7 and Sentinel 2 (S2) spatial/spectral
configurations is then carried out: both images are processed by
the proposed DL architecture to assess their relevance to dis-
cover different classes and investigate their complementarity.
Second, the previous DL network is modified to perform data
fusion and applied to previous sensors. At the end, the pro-
posed fusion framework is used to enrich an existing S2 based
LC product, as it is generic enough to cope with fusion at dis-
tinct levels, as long as training data are available.

2. SEMANTIC SEGMENTATION METHOD

2.1 Short overview of existing methods

Deep learning approaches and especially Convolutional Neural
Networks (CNN) are at present the most efficient semantic seg-
mentation methods as long as a sufficient training dataset is
available (LeCun et al., 2015). Indeed, compared to more tra-
ditional machine learning methods involving handcrafted fea-
tures, such methods better cope with texture and context in-
formation and show increased generalisation capacities. The
most efficient CNN semantic segmentation architectures are fully



convolutional encoder-decoder ones (Long et al., 2015). U-net
(Ronneberger et al., 2015) is one such architecture. Compared
to basic encoder-decoder, it involves skip connections between
corresponding encoder and decoder layers to progressively re-
introduce high frequency information in the decoder to better
delineate objects. (Zhou et al., 2018) proposed a variant named
U-net+ involving 1d convolution in the skip connections to keep
only the most relevant high frequency information from the en-
coder layers. More complex approaches as (Chen et al., 2017)
exist but involve heavier architectures.

DL approaches have already been applied to mono-date SPOT-
6/7 like imagery, from earlier experiments with a patch-based
method (Postadjian et al., 2017) to a two-entries network using
separately panchromatic and multispectral bands (Gaetano et
al., 2018). (Maggiori et al., 2017) proposed a multi-resolution
approach to better cope with context information, that can also
be tackled using atrous convolution (Chen et al., 2017).

DL architectures were also proposed for remote sensing data
fusion. They generally consist in as many encoders as data
source. Most of them were dedicated to image-DSM fusion,
e.g. (Audebert et al., 2018, Koppanyi et al., 2019), but S2 time
series and VHR image fusion has also been tackled (Benedetti
et al., 2018).

2.2 One sensor CNN architecture

For this study, a light yet efficient network is required. Indeed,
a light architecture reduces the number of parameters to optim-
ize, and is less training set greedy. To lower computing times, a
fully convolutional network was preferred to the ones involving
fully connected layers as (Gaetano et al., 2018).
At the end, the U-net like CNN presented in figure 1 was adop-
ted. It is slightly different from the original U-net (Ronneberger
et al., 2015). First, its depth is reduced to take into account the
resolution of the images in respect to the small size of targeted
objects. Second, to improve spatial information, as in (Noh et
al., 2015), transposed convolution is used in the decoder and
Max pooling from the encoder transfer their max-indices to ho-
mologous Unpooling layers in the decoder.
Convolutions are done with mirror padding and each floor is
composed of two block containing a 2D convolution, a Batch
Normalization (Ioffe, Szegedy, 2015) and a ReLU activation.
Both Max pooling and unpooling operations have a ratio of 2.

Figure 1. Proposed architecture based on Deconv-Net and
U-Net. Blue : 3×3 convolution, green : 2×2 max pooling, red :
2×2 unpooling, Violet : 3×3 deconvolution, ++ : concatenation,

max : softmax.

2.3 CNN architecture extension towards fusion

The previous architecture is extended to sensor fusion, espe-
cially to merge SPOT-6/7 and S2. It is simply turned into a

double entry CNN. The previous encoder branch was simply
duplicated. The merging point of these two encoding branches
is set before the deepest layer. Skip connections and max pool-
ing indices transfer, supposed to enhance spatial information
flow are only kept for SPOT entry, as it’s the main provider
of spatial information. Both sensors are expected to have been
resampled at a same GSD for reasons given in 3.2. Keeping
the same encoding and decoding operations as in the previous
mono sensor CNN also enables to fairly compare them.
It can here be noted that this architecture can cope with fusion
at different levels (early or late) as inputs can be raw images,
classification probabilities or label maps.

Figure 2. Proposed architecture for fusion. Same color legend as
figure 1

2.4 Implementation details

The forward operation is fed with image tiles of 264 × 256
pixels, which are normalized given the 2% and 98% quantiles
of the radiometric distribution of the whole image. Training and
evaluation is done out of a set of couples of images and ground
truth tiles at the same size. Training, validation and test sets
represent respectively 60%, 20% and 20% of the whole dataset.

”Xavier” initialization (Glorot, Bengio, 2010) and ”Adam” op-
timizer (Kingma, Ba, 2014) are used for the learning step. The
latter follows a step decreasing learning rate from 10−2 with
γ = 0.7 each 50 epochs. The loss function is a weighted cross
entropy. It aims at taking into account the strongly heterogen-
eous class representation in the dataset. Each weight w[class]
is calculated out of its class proportion p[class] asw[class] = 0
when p[class] = 0 or w[class] = 1

p[class]
∑n

i=1 p[i]2
(with n the

number of classes) else.

Both networks are implemented in https://pytorch.org frame-
work.

3. ASSESSMENT DATASET

As mentioned earlier, this study is mainly dedicated to met-
ric VHR multispectral SPOT-6/7 imagery available regularly at
country scale and aims at assessing to which extent an enhanced
spatial resolution is relevant for LC classification. In particular,
its complementarity with commonly used S2 sensor is studied
for different LC classification problems (see 3.4). Having a fair
comparison between both sensors also implies defining some
requirements concerning images are processed (see 3.2).

3.1 Study area

Experiments are performed over a study area of 576 km2. It
covers the dense urban area of Toulouse city (south-western
France) and its rural surroundings. Thus, it contains various
land cover classes.



3.2 Image data : sensors, requirements and restrictions

SPOT-6/7 and S2 sensors are considered:

• SPOT-6/7 image has a final resolution of 1.5 m. It res-
ults from pansharpening out of native panchromatic and
multispectral (red-green-blue-near infrared) data.

• S2 image is a cloud-free gap filled synthesis generated out
of a month long time series. All bands are considered ex-
cept B1, B9 and B10.

However, specific precautions have to be taken in order to guar-
antee an equivalent processing and a fair comparison of both
sensor:

• Only one monodate image per sensor is considered. Both
were captured at the same period, respectively end of June
2018 and July 2018 for SPOT-6/7 and S2, so that different
results can be related only to their spatial or spectral con-
figurations. It must here be reminded that the present study
is for the moment only dedicated to the assessment of the
spectral/spatial configurations of both sensors. Thus, though
they are already known to enhance crops and vegetation
discrimination, the multi-temporal characteristics of S2 and
its ability to deliver time series is not investigated further.

• S2 image has been upsampled from its native 10m or 20m
GSD to SPOT-6/7 1.5m GSD to cope with the spatial resol-
ution gap between both sensors. Though slightly artificial,
this resampling step ensures the comparison is fair and the
receptive field of the architecture corresponds to the same
ground area in both imagery.

3.3 Training and reference LC data

Training and reference LC maps are generated from a selection
of layers from existing national national topographic, forest and
agriculture vector geodatabases. The topographic and forest
database describes buildings, roads, water areas and forests. Its
current version was last updated in 2016. The agriculture DB
corresponds to the crops in 2018 and is thus completely coher-
ent with images. All DBs were rasterized and tiled to match
their corresponding satellite tiles. It must also be kept in mind
that these generated LC maps do not partition the whole study
areas as some parts are not described in these original DB.

3.4 Land cover nomenclatures

Thanks to its fine spatial resolution, SPOT is expected to im-
prove the detection of classes with thin specific texture features
or consisting in small objects (e.g. urban objects). On the other
hand the enhanced spectral configuration of S2 should enable
a better discrimination for classes with specific optical features
(e.g. vegetation species). Thus considered LC classification
problems have to involve these different kinds of classes.

Two land cover problems are considered. Their nomenclatures
as well as the representation of the different classes over the
data set are presented in table 1.
6 class nomenclature: this legend involving 5 basic topographic
classes (buildings, roads, high vegetation, low vegetation/crops,
water areas) is suitable to almost all landscapes. An ”around
building buffer” class is added to help to enhance building de-
lineation. Indeed, building surroundings are generally not de-
scribed in the previous databases. This additional class intro-
duces constraints in such area preventing building overdetec-
tion over their direct unlabelled neighbourhood. A 5m radius

was used to create this buffer from the buildings.
18 class nomenclature: It is more complex aims at understand-
ing specific class type detection properties and fusion potential.
Except for ”cemeteries”, its items mostly correspond to sub-
classes of the 6 class legend. For instance, roads is split into a
”main roads” (containing highway, 1 and 2 traffic lanes roads,
and their respective junctions) and a ”path” (all other smaller
roads, paths, etc.) classes. As the study focuses on the en-
richment possibilities brought by SPOT-6/7 , classes adapted
to VHR information were considered (e.g. buildings or road
types), while the the crops class was not extended.

6 class 18 class•Buffer (Buf) 11.1% •Buffer (Buf) 11.1%•Water (Wat) 2.9% •Water (Wat) 2.9%•Crops (Cro) 47.8% •Crops (Cro) 47.8%

•Roads (Roa) 6.0%
•Paths (Pat) 0.3%•Main roads (MR) 4.3%•Airstrip (Air) 0.6%•Parking (Par) 0.9%

/ •Cemeteries (Cem) 0.2%•Conifer (Con) 0.6%•Deciduous (Dec) 16.3%•Open Forest (OF) 0.5%•Vegetation 23.9% •Hedges (Hed) 4.6%
(Veg) •Heaths (Hea) 1.5%•Poplars (Pop) 0.2%•Orchards (Orc) 0.1%•Vines (Vin) 0.1%•Buildings 8.1% •Residential (Res) 6.2%
(Bui) •Industrial (Ind) 1.9%

Table 1. 6 class and 18 class data distribution, acronyms and
color legend

4. SENSOR COMPARISON: RESULTS AND
DISCUSSION

This first set of experiments aims at assessing the relevance and
complementarity of SPOT-6/7 and S2 sensors for land cover
classification problems. Inference maps are displayed on polar-
sensing.net/isprs2020.

4.1 Quality assessment

Results are compared to ground truth maps at pixel level. Ac-
curacy scores are derived out of confusion matrices: per class
Intersection over Union (IoU), their mean Intersection over Union
(mIoU) and the Overall Accuracy (OA). However, these figures
must sometimes be handle with care. Indeed, reference DB are
not completely up-to-date (see section 3.3) and are not a full
partition of the image. Besides, some classes are also land use
ones and can contain different land covers, as the cemetery ex-
ample of figure 4.1 that also contains vegetation parts. Thus,
visual assessment is also considered to get a better comprehen-
sion of the results.

4.2 6 class comparison

The results for the 6 class nomenclature are shown in table 2.
Overall metrics already show better discrimination capabilities
of SPOT-6/7 sensors. The score gap with S2 is mainly due
to the better classification of small topographic elements like
roads, buildings and buffers. However, the delineation of such
small objects out of S2 is better than expected (fig 3.3). High

https://polarsensing.net/isprs2020.html
https://polarsensing.net/isprs2020.html


vegetation and crops usually relying more on spectral inform-
ation show less SPOT-6/7 / S2 differences. Very High spatial
Resolution (VHR) SPOT-6/7 sensor generally improves object
delineation.

6 class 18 class
SPOT S2 Fu. SPOT S2 Fu.

mIoU 78.4 74.5 79.7 mIoU 48.9 42.2 52.1
OA 91.6 89.5 92.2 OA 86.3 81.5 86.5

IoU IoU
Buf 64.2 58.0 66.7 Buf 64.2 55.9 64.2
Wat 87.3 87.1 88.3 Wat 86.7 86.5 86.2
Cro 94.6 93.4 94.9 Cro 93.7 88.2 93.5

Roa 72.1 67.7 74.6
Pat 12.7 5.3 11.0
MR 65.0 59.9 65.4
Par 42.1 36.5 50.1
Air 69.9 64.9 71.8

/ / / Cem 30.2 16.9 37.1

Veg 85.6 84.0 86.2

Con 37.0 34.7 46.6
Dec 80.6 76.8 80.9
OF 9.0 4.7 8.3
Hed 44.3 42.8 44.9
Hea 26.1 21.1 27.1
Pop 27.9 43.2 45.2
Orc 2.3 1.0 6.7
Vin 85.0 25.6 87.1

Bui 66.3 57.0 67.6 Res 56.9 49.2 59.1
Ind 46.0 46.1 52.5

Table 2. Classification results (in %) for simple and complex
legends from both sensors and for the proposed fusion CNN.

”Fu.” stands for ”Fusion”.

4.3 18 class comparison

The first obvious results of nomenclature enrichment, displayed
in table 2, is the global metric drop. Both SPOT-6/7 and S2
inferences suffer a 30% loss of mIoU score. Per class IoU reveal
that it is mainly caused by vegetation class dilatation.
Several situations can be distinguished.

Classes with strong textural aspect but with few examples
(vines, cemeteries,...) These classes are by nature more prone
to be better detected out of SPOT-6/7 than S2. Vine class is a
good example (fig. 3.1). S2 confusion matrix underlines that
spectral information is inadequate to separate vines from crops.
Inversely SPOT-6/7 VHR is able to use the characteristic texture
of vineyards. However, it must be reminded that vine is the less
represented class and thus its great detection score could be the
consequence of a optimal setup in the dataset.Orchards present
the lowest IoU for both sensors. Many orchards are classified
as deciduous trees. Orchards is a land use class, and its exploit-
ation layout is the only difference with deciduous trees. How-
ever, it is here unsufficient to distinguish it from other forest
classes, even at SPOT-6/7 resolution. IoU score of S2 infer-
ence confirm that no other discriminating attributes can be de-
rived from spectral information. Thus, sensor fusion will prob-
ably not help its detection. Poplar class follows the same ex-
ploitation layout statement as orchards, but demonstrates better
SPOT results than the latter, meaning more reliable texture fea-
tures are identified by the CNN. Low metrics are explained by
visual assessment: several stands labeled as poplars were cut,
resulting in open fields similar to heath.S2 sensors shows better
discrimination capabilities, even without textural analysis. As
poplar layout frequency is not visible in S2 imagery (6 to 9 m
between trees) it reveals useful superspectral features. Hence,
sensor fusion will probably improve poplar . Similar good fu-
sion a priories can be stated for cemeteries class. S2 show quite
good IoU scores even if tombstones texture frequency is less

lower than its resolution , and SPOT also provide good tomb-
stone detection (fig. 4.1), even though, cemeteries tend to be
over detected in urban areas. It is mostly a visual noise with
low effect on metrics as the ground truth is not a full partition.
More generally, using cross entropy weights according to class
proportion forces the CNN to strongly associate certain texture
to low represented classes, that can bring classification noises
where closely related textures appear.

Classes with high semantic proximity Industrial buildings
class performance is equivalent for both sensors (fig. 3.2). This
fact highlights the relevance of superspectral features derived
from S2. Indeed, Short-Wave Infrared (SWIR) bands of S2 help
to discriminate the hydrocarbon surfaces on industrial building
(as it was assessed by an additional experiment involving only
the 4 native 10 m GSD multispectral bands of S2). Thus, uni-
fied industrial complex is better segmented (fig. 3.2.d). Yet
SPOT sensor is able to get cleaner border object delineation
(fig. 3.2.c). These two facts underline good fusion a priories for
this class. Nevertheless such facilities only appear in industrial
and commercial areas. Thus this S2 property does not provide
any help to discriminate residential from industrial buildings
in dense urban contexts, where buildings are generally similar.
Confusion matrix analysis validates that the latter point con-
stitute their main confusions source. Roads enrichment suffers
mainly from the ”path” class detection. Its thin geometry makes
it harder to be detected out of S2. Results from both sensors
display a non semantic way of bordering paths and mains roads
(fig. 3.3). Proposed CNN is probably not deep enough to under-
stand the need of placing roads border on intersection.If SPOT
classification metrics on roads enriched classes is higher than
S2, the latter still presents close scores. This fact, linked to the
latter discussed S2 capabilities of detecting hydrocarbon sur-
faces, tends towards good fusion performances a priories. This
exclude paths which do not mainly exhibit such materials.

Heterogeneous compound land cover classes This situation
was already mentioned for the very specific cemeteries example
of fig. 4.1: this class corresponds to a land use and do not la-
bel only tombstones but also vegetated areas, while the CNN
has identified a cemeteries specific texture and is not able to as-
sociate the latter surroundings to cemeteries classes. Data dis-
tribution pressures the learning towards labelling already seen
elements to the most present class. Open forest is a mix of de-
ciduous, coniferous and heath classes, but has no specific tex-
ture for the CNN to hang on, like tombstones for cemeteries.
Two ground truth specification points complicate its classific-
ation: (1) it is defined as a large percentage windows of tree
coverage by square meters into a certain polygon and (2) there
is a huge disparities of how this percentage is balanced into the
latter (close forest and a glade, or evenly distributed). This res-
ults to a bad overall classification that would probably not be
improved by sensor fusion.

Other classes A high misclassification rate is observed for
vegetation classes as deciduous trees. As data distribution is
mainly in favor of the latter, its IoU does not underline this phe-
nomenon. More generally, it is generally difficult to conclude
about the sensor relevance to retrieve forest classes because of
reference DB’s specification (important mimimum collect unit)
and temporal shift that can generate learning and evaluation bi-
ases. Results are even difficult to be visually assessed. Conifer
are mainly discriminated by a high near infrared absorption.
But this spectral feature can disappear, especially for young
conifer stands, leading to heaths or deciduous trees misclassi-
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Figure 3. Rows : (1) Vineyards, (2) Industrial and commercial area, (3) Paths in diffuse urban area. Columns : (a) SPOT image, (b)
Ground truth, (c) SPOT inference, (d) S2 inference, (e) Fusion inference

fication (fig. 4.2) compared to the database for which such par-
cel remains a conifer stand even though young conifers can in-
deed really be lost among these classes. Moreover forest reality
does not display straight border like DBs polygons. Therefore,
these mismatch impacts accuracy metrics, even when CNN in-
ference corresponds to ground reality. Hedges and heaths suf-
fer from the same labelling problems. In general both sensors
achieved same classification performances on forest elements,
even though results are different. Visual analysis shows a better
element delineation from SPOT.
Last, the three unextended classes (water, crops and building
buffer) only undergo small loss. Crops class lost 2 IoU percent
with S2 sensors, where confusions between industrial buildings
and green-housed crops fields appears.

4.3.1 Stability assessment A strong correlation when align-
ing the 18 class nomenclature onto the 6 class one. This aggreg-
ation was done by assigning each of the 18 class its hierarchic-
ally correspondent class from the simple nomenclature (except
for cemeteries that were just dismissed and considered as unla-
belled pixels). The aggregated classification can then be eval-
uated according to the simple nomenclature ground truth. The
results shown in table 3 point out the disappearance of mIoU
and OA drop between complex and simple nomenclature classi-
fications observed in table 2. This indicates that prime misclas-
sification faults occur between related classes. A more detailed
nomenclature only contributes to a 1.99% mIoU decline. This
reduction is mainly induced by a drop in the roads and build-
ings classification. Misclassification between industrial build-
ings and airstrip/parkings can also be noticed from confusion
matrices. These errors are inter-classes and still exist after a no-
menclature aggregation. At the end, rich nomenclature shows
a reliable overall stability compared to simple one, but is still
sensitive to spectral or textural similar but non-related classes.

6 class 18 class 6 class 18 class
mIoU 78.4 76.4 OA 91.6 90.6

IoU IoU
Buff. 64.2 63.0 Roads 72.1 68.7

Water 87.3 86.6 Veget. 85.6 83.9
Crops 94.6 93.4 Build. 66.3 62.7

Table 3. Results (in %) for simple and transposed to 6 class
complex nomenclature with SPOT images.

5. SPOT - S2 FUSION: RESULTS AND DISCUSSION

Sensor fusion was performed according to the proposed CNN
architecture fed with SPOT-6/7 and S2 images. Fusion classi-
fication improved the previous best mIoU (from SPOT) by 3 %.
Per class accuracy scores (see table 2) reveal sensor fusion has
better discrimination for low represented classes at the cost of
more errors on highly represented ones.

5.1 Pros

Fusion mostly profits to classes with specific spectral proper-
ties in NIR or SWIR domain. This explains the IoU increase of
hydrocarbon surfaces, in particular on parkings, airstrips and in-
dustrial buildings. For the latter class, very good building detec-
tion is achieved (fig. 3.2). Fusion improves the detection of de-
ciduous, conifer, heath and poplar classes, confirming previous
intuitions from sensor assessment. CNN semantic segmentation
errors on the latter class (fig. 4.3) helps to understand its dis-
crimination mechanisms. It is based onto textural pattern with
a 7 to 10 m frequency. On figure 4.3.e, poplar over-detection is
of this latter order of magnitude. This reveals the fusion CNN
can extract new discriminant features from both sensors.
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Figure 4. Rows : (1) Cemetery, (2) Forest area, (3) Countryside area. Columns : (a) SPOT image, (b) Ground truth, (c) SPOT
inference, (d) S2 inference, (e) Fusion inference

5.2 Cons

As already pointed, the main mIoU improvement comes with
several classification faults. The main problem consists in a
decrease of spatial information stability, a coarser object delin-
eation. This is easily confirmed by a visual comparison between
SPOT and Fusion inferences. This is why roads class did not
undergo a similar detection increase as other hydrocarbon sur-
faces (fig. 3.3). Hedges and mainly paths classes are also
affected by this spatial issue. Misclassification of agricultural
furrows as paths also increases. Classes that presented bad se-
mantic segmentation score on mono-sensor inferences do not
show better results. This confirms intuitions about sensor com-
plementarity from section 4 but indicates that Fusion network’s
learned feature stay closely related to sensors’performances.

6. TOWARDS ON DEMAND LC MAPS: FUSION TO
ENRICH AN EXISTING LC PRODUCT

Previous fusion tests only concern two single-date images, but
S2 time series were not evaluated, while they are known to
contain discriminant information for instance to classify (crops
or forest) vegetation species. This powerful characteristic of
S2 is here indirectly taken into account, through the use of
an already existing classification results (a label map) inferred
from S2 time series. This experiments aims at improving the
latter product using VHR SPOT imagery through a reclassific-
ation process. Indeed, the proposed fusion CNN framework is
generic enough to cope with fusion at distinct levels (early or
late) as its inputs can be raw images, classification probabilities
or label maps, as long as training data are available. Thus, it is
used here to merge a label map and a VHR SPOT-6/7 image.

6.1 Data

6.1.1 Inputs The already existing semantic segmentation is
the OSO map (Inglada et al., 2017). OSO is automatically gen-
erated each year over the whole French territory by a Random
Forest classification of a year long gap-filled S2 time series.
OSO products are freely available at osr-cesbio.ups-tlse.fr/∼oso/
OSO map is a raster product (i.e. a byte single-channel im-
age containing a value corresponding to the attributed label per
pixel).

SPOT image is the same than previous tests. Thus, the 2018
version of OSO map is considered to be consistent with it.

6.1.2 Ground truth and nomenclature issues The ground
truth is generated out of from the same geodatabases presented
in 3, which are also approximately the same than are used to
train the OSO classifier.

Nomenclature adaptations However, the original OSO no-
menclature has to be adapted, as described in 4.

• On one hand, some OSO classes, like glaciers or dunes, are
not present in the study area and thus become irrelevant.
Hence they are discarded.

• On the other hand, dense, diffuse and industrial & com-
mercial urban area classes display a coarser level of de-
scription than SPOT can achieve. Thus they were replaced
with new finer classes : residential and industrial build-
ings. A urban vegetation class was also added. It serves
as an equivalent role of the previous building buffer class,
namely helping buildings instantiation.

Indeed, a strength of the proposed fusion strategy states in its
ability to reclassify the original OSO map for a different no-
menclature, taking into account SPOT image information.

http://osr-cesbio.ups-tlse.fr/~oso/
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Figure 5. Rows : (1) Road network overview, (2) Countryside area, (3) Industrial and commercial area. Columns : (a) SPOT image,
(b) Ground truth, (c) OSO map, (d) Reclassification inference, (e) Fusion inference

Kept New•Water (Wat) 3.6% •Residential (Res) 7.9%•Rapeseeds (Rap) 6.1% •Industrial (Ind) 2.4%•Cereals (Cer) 18.6% •Urban 8.2%•Protein plants (PP) 0.4% vegetation (UV)•Soya (Soy) 1.9% Discarded•Sunflower (Sun) 4.4% •Dense urban areas•Corn (Cor) 6.7% •Diffuse urban areas•Grasslands (Gra) 8.3% •Ind. & com. areas•Orchards (Orc) 0.1% •Rice•Vines (Vin) 0.1% •Root & tubers•Deciduous (Dec) 20.4% •Lawns•Conifer (Con) 0.7% •Mineral surfaces•Heath (Hea) 1.9% •Beaches & dunes•Roads (Roa) 7.9% •Snows & glaciers

Table 4. OSO nomenclature adaptations with discraded, kept and
new classes, their data distribution, acronyms and color legend

6.2 Results

6.2.1 Quality assessment Original OSO LC map is first eval-
uated according to the ground truth. Discarded classes were
treated as no data. mIoU and OA were calculated only for
kept classes. Obviously, no score could be calculated for new
classes, and thus they will only be considered for a visual com-
parison.
The reclassified LC map obtained from the fusion of OSO map
and SPOT imagery is evaluated over all classes of the new re-
classification nomenclature.
Obtained quality metrics are presented in table 5.

6.2.2 Main improvements First visual assessment confirms
a huge detection improvement of urban areas basic elements
from OSO map (fig. 5.1). Contrary to original OSO product,
road network is no longer limited to highways. Finer road net-

OSO Fusion Fusion
Kept mIoU 39.8 67.6 mIoU 65.6
Kept OA 62.3 88.2 OA 85.6

IoU OSO Fusion OSO Fusion
Wat 69.5 87.4 Con 19.3 46.0
Rap 79.4 85.9 Hea 4.2 30.6
Cer 73.4 87.3 UV / 55.6
PP 9.1 42.1 Roa 8.4 74.2
Soy 55.8 70.1 Orc 0.7 6.2
Sun 8.7 78.6 Vin 0.8 88.5
Cor 75.0 77.3 Res / 79.4
Gra 21.6 70.6 Ind / 54.8
Dec 64.2 80.6

Table 5. Results (in %) for OSO classification and its reclassified
version. Kept mIoU and Kept OA omitted incomparable classes

in italic.

work previously submerged with dense and diffuse urban areas
class is now well depicted. This is confirmed by a more than
60% increase in IoU scores.
The second main improvement states in cleaner border delin-
eation between well detected semantic elements. Crops fields,
forestry and other objects all benefit from the finer textural ana-
lysis brought by the SPOT VHR.
Moreover the latter also helps crops discrimination. Many crops
classes show high IoU progress, which can not only be linked
to more accurate borders. One such improvement concern the
suppression of buildings and crops misclassifications present in
OSO map. Indeed, the fusion CNN shows some great capacit-
ies of finding the good crop label when OSO maps previously
labelled them as buildings (fig 5.2). It seems to have learned
the previous algorithms weaknesses, and having linked specific
crops texture to RF often misclassified labels.

6.2.3 Mono temporal fusion comparison As the ground
truth and methods are similar, the OSO reclassification result



can be compared to the previous fusion one using mono tem-
poral images (cf section 5). One can first notice that both results
have the same IoU scores on deciduous trees. This is mainly ex-
plained by the fact that deciduous trees are already well detec-
ted by SPOT. On the other hand conifer IoU score of previous
fusion overtake the current one. As the image fed into the net-
work is only a semantic segmentation map exhibiting a poor
conifer detection performance, it has lost all specific spectral
information which could improve the result. This is why the re-
classification result is closer to SPOT alone classification score
on this specific class. The already stated difficulties (see section
4.3) to draw strong conclusions about forest classes discrimina-
tion were encountered here. Concerning building detection, ac-
curacy metrics display a great residential and industrial growth.
Especially for residential buildings, the absence of the building
buffer class suppresses a huge constraint and detected build-
ings tend to be overdetected over their (unlabeled in the ground
truth) surroundings. Thus this gain is only metric-wise and has
no visual impact on inference maps. For industrial facilities,
the a priories brought by industrial & commercial areas class
from OSO map help avoiding previous crops misclassification.
Nevertheless the absence of further spectral information does
not make possible the reconstruction of industrial buildings as
previous fusion achieved (fig. 5.3).

6.2.4 Other errors By comparing the 6 class classification
result from SPOT to the reclassification one, one can state that
the fusion CNN does not exploit all SPOT capabilities in terms
of spatial information. Small roads are less detected, and border
generally appear more blurry than for the simple nomenclature
segmentation. Some reclassification errors can also be added in
some crops that were well classified in OSO map. In particular
a confusion between corn and sunflowers is observed as in the
lower part of fig. 5.2 images.

7. CONCLUSION AND PERSPECTIVES

This study was wondering about the use of metric sensors, as
SPOT-6/7, to improve Sentinel-2 based land cover products. A
custom simple yet effective U-net - Deconv-Net inspired DL
architecture was set to classify such data. SPOT-6/7 and S2
spatial/spectral configurations were evaluated for two different
LC nomenclatures, a simple and a fine-grained ones. As ex-
pected, SPOT VHR enables to better retrieve small topographic
object and textured classes, while S2 additional bands are help-
ful for some classes. The proposed approach was tested over 4
SPOT images, but the model was trained for each of them (fine-
tuning). Thus, it would be relevant to limit its dependence on
training data. The proposed DL architecture was then extended
to data fusion. It was first applied to previous sensors, leading to
globally improved results even though object delineation can be
slightly coarser than using only SPOT. It was also used to enrich
an existing S2 based LC product (label map), tackling the on-
demand land cover issue. Obtained result is globally improved,
but some errors also occurred that could be avoided using also
S2 imagery. Thus, the CNN should be modified to have a third
entry corresponding to one S2 image, or to directly integrate
S2 time series. Last, object delineation could also probably be
improved considering U-net + skip connections.
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